Fine structure analyses of the Drosophila and Saccharomyces heat shock factor--heat shock element interactions.

نویسندگان

  • M Fernandes
  • H Xiao
  • J T Lis
چکیده

Heat shock genes are activated by the binding of the heat shock transcription factor (HSF) to heat shock elements (HSEs), consisting of arrays of the 5-bp unit NGAAN arranged as inverted repeats. Here, we have investigated the interaction of the 5-bp unit with HSFs of Drosophila and Saccharomyces. Mutations within the conserved, central trinucleotide GAA reduce the relative binding affinity of both HSFs. In addition, the base at position 1 (N1) also influences binding, with a strong preference for an A at this position. Methylation interference initially indicated that HSF contacts A1 in the minor groove, but interacts with the immediately adjacent base G2 in the major groove. Further characterization of this apparently abrupt minor to major groove transition by substitution of A1 with an inosine, shows that HSF contacts A1 in the major groove. We offer an explanation for this apparent contradiction and propose that HSF recognizes the HSE primarily through contacts within the major groove of the DNA helix. Finally, based on these observations and a re-evaluation of the base frequencies and criteria for consensus sequence assignment, we propose that the sequence AGAAN more accurately represents the consensus HSE motif.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A model for handling cell stress

The heat shock response in yeast is regulated by the interaction between a chaperone protein and a heat shock transcription factor, and fine-tuned by phosphorylation.

متن کامل

Genome-wide analysis of the biology of stress responses through heat shock transcription factor.

Heat shock transcription factor (HSF) and the promoter heat shock element (HSE) are among the most highly conserved transcriptional regulatory elements in nature. HSF mediates the transcriptional response of eukaryotic cells to heat, infection and inflammation, pharmacological agents, and other stresses. While HSF is essential for cell viability in Saccharomyces cerevisiae, oogenesis and early ...

متن کامل

Major heat shock gene of Drosophila and the Escherichia coli heat-inducible dnaK gene are homologous.

The Escherichia coli dnaK gene is homologous to the major heat shock-induced gene in Drosophila (Hsp70). The primary DNA sequence of the entire protein-coding region of the dnaK gene was determined and compared with that of the Hsp70 gene of Drosophila. The two sequences are homologous; the dnaK gene could encode a 69,121-Da polypeptide, 48% identical to the hsp70 protein of Drosophila. The hom...

متن کامل

A bipartite operator interacts with a heat shock element to mediate early meiotic induction of Saccharomyces cerevisiae HSP82.

Although key genetic regulators of early meiotic transcription in Saccharomyces cerevisiae have been well characterized, the activation of meiotic genes is still poorly understood in terms of cis-acting DNA elements and their associated factors. I report here that induction of HSP82 is regulated by the early meiotic IME1-IME2 transcriptional cascade. Vegetative repression and meiotic induction ...

متن کامل

Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability.

We have cloned two distinct mouse heat shock transcription factor genes, mHSF1 and mHSF2. The mHSF1 and mHSF2 open reading frames are similar in size, containing 503 and 517 amino acids, respectively. Although mHSF1 and mHSF2 are quite divergent overall (only 38% identity), they display extensive homology in the DNA-binding and oligomerization domains that are conserved in the heat shock factor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 22 2  شماره 

صفحات  -

تاریخ انتشار 1994